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Visual tracking pipeline for resource constrained devices 

 
 
 
 

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	



 

 

Visual Target Tracking 

Visual target tracking refers to following a target that is designated by a bounding box on a 

single frame. In autonomous and semi-autonomous systems, this is often used for 

applications such as “Smart Track”, “Follow Me”, and Automatic Object Tracking. 

 

Teleidoscope has developed its own proprietary visual target tracker called RAD which 

stands for Recoverable Adaptive Discriminative Appearance Model Tracking.  

Teleidoscope’s RAD Tracker can track any patch of an image, whether it’s an elephant, an 

aircraft, a cloud, or a patch of mud on the ground. 

 

Below are two demonstrations of Teleidoscope’s Visual Target Tracker paired with it’s single 

point designator which is discussed below. 

	

 

RAD Initialization Options 

RAD’s internal model requires a bounding box to initialize, but this bounding box can be 

designated using the following modalities: 

• explicit bounding box 

• single point 

• detection (i.e bounding box with ancillary data). 

RGB – https://youtu.be/X0o_XXqOmeQ  LWIR - https://youtu.be/--WryOyeMII 



 

 

 

Explicit Bounding Box Initialization 

Designating a portion of the image via an explicit bounding box allows the operator to track 

very specific regions of the image. This can be useful in cases where the object is very 

difficult to see, or if the operator is looking to track a specific piece of an object e.g: tracking a 

window of a building rather than the entire building. 

 

To the right is an example of a case where explicit 

bounding box initialization is useful. There is a bike 

rider which is very difficult to see, and would not 

be picked up by a detector, or Teleidoscope’s 

Single Point Designator. 

 

 

Explicit Box – https://youtu.be/RmBJBI1xhOs 

 

The pipeline components involved for explicit bounding box initialization can be seen below 

and are highlighted in green. 

 

 



 

 

 

Detection Based Initialization 

Detection Based Initialization is useful in fully autonomous systems. This is often referred to 

as automatic detection tracking, and does not require user input, but is limited to tracking 

specific types of objects. This is ideal for long-term surveillance of an area. An example use 

case is automatically tracking and counting of vehicles or pedestrian traffic. 

  

Other solutions lock customers into using the 

provided detectors, but with Teleidoscope’s 

Visual Pipeline it is easy for customers to pair 

their own detectors.  

 

Detector Init – https://youtu.be/m0ioI3O5l7A 

 

This decoupling allows a customer to continue to refine their own machine learning 

detectors while reaping the benefits of Teleidoscope’s Visual Target Tracker. The customer 

is able to use Teleidoscope’s built in detectors if they wish, but are not locked in. 

  

 



 

 

Single Point Initialization 

Single point initialization makes it easy for an operator to select objects and image patches in 

live video. This can optionally be paired with a detector for specific use cases where the 

operator will always be tracking a particular object like a person, or a vehicle. 

 

To the right is an example of a case where 

Single Point Initialization is useful. This 

example is not paired with a detector, and is 

only using the single point designator to 

specific the bounding box.  

 

              Detector Init – https://youtu.be/PSmw7Nh-1lE 

 

The pipeline components involved for Single Point Initialization can be seen below and are 

highlighted in green. 

 

 

 

 



 

 

Modularity and Portability 

Software Development Kit (SDK) 

Teleidoscope’s visual target tracking software is available as a C++ SDK, python SDK, and 

comes with a set of samples and testing utilities. 

 

Resources – CPU vs GPU 

Teleidoscope’s visual target tracker was built from the ground up to run on resource 

constrained devices. This tracker is designed specifically to run on CPU which means it can 

run a wider range of devices than GPU specific solutions. For UAVs with a GPU, more GPU 

resources can be dedicated to other tasks. 

Camera 

Teleidoscope’s visual target tracker does not have specific camera requirements and works 

with standard RGB, and IR frames. 

 

What sets Teleidoscope’s Target Tracker Apart 

Teleidoscope’s target tracking solution is easy to use, interoperable with built in, and custom 

machine learning detectors, and is camera and platform agnostic. 

 

Though the above are important differentiators, what really sets Teleidoscope’s solution 

apart is its performance, which is due to Teleidoscope’s core IP called a Recoverable 

Adaptive Discriminative Appearance Model(RAD) Tracker. This is the result of ongoing R&D 

efforts. 

 

RAD Self Diagnostics and Recovery vs State of the Art (SotA) 

Current SotA trackers use a binary pass/fail approach when tracking by computing a 

confidence score and comparing it against a fixed threshold. A tracked object is considered 

tracked while above the threshold and lost when it falls below the threshold. Avoiding target 

loss is a top priority for a tracker because once a target is lost the tracker must be 



 

 

reinitialized. To avoid spurious loss from sudden appearance changes, most trackers will 

lower the threshold to consider an object tracked. This workaround is often seen in the KCF 

tracker, a popular tracker used by companies like DJI. Overtime this can lead to appearance 

contamination from the background or partial occlusions of the tracked object.   

 

When this contamination occurs, the tracker may slowly drift without realizing it’s no longer 

tracking the original object (blind drift).  Whether or not this can be tolerated depends on 

what the tracker is being used for. If the tracker is being used to track faces in a photo 

application, drift likely isn’t an issue. However, if the tracker is being used in a critical system 

(i.e. defense), correctly reporting target loss and ensuring the correct target is being tracked 

is essential.  

This complicates tracking because it forces trackers to choose between aggressively failing 

or accepting drift.  RAD attempts to solve this problem by using a per-target auto calibrated 

confidence threshold and adding two additional intermediate states (weak and unstable) 

that guide tracking behavior: 

1. Strongly tracked 

2. Weakly tracked 

3. Unstable  

4. Lost  

   

Strongly Tracked State: Being in the Strongly Tracked state has the similar implications as 

the tracked state reported by other trackers.  

 

Weakly Tracked State: When in the Weakly tracked state RAD will temporarily disable 

updates to the appearance model and start estimating two positions.  

 

Unstable State: When in the Unstable state RAD will stop model updates and model 

estimators then begin the target re-localization and recovery process before considering a 

target permanently lost.  



 

 

 

These extra states act as an early warning indicator allowing applications to respond to 

situations where target loss is more likely but is still being tracked. An example usage might 

be within the detect-to-engage sequence of a fire-control system. If the target suddenly 

becomes weakly tracked but is still trackable, the FCS operator may wish to defer 

engagement to avoid the scenario where the target is lost immediately after engaging.     

 
	
Hybrid Model Estimator 

Unlike most SotA trackers which only use a single model for estimation, RAD uses at least 3 

and up to 5. The first is the RAD Appearance Model, which consists of an N dimensional blob 

that encodes information about the color, texture and shape of the target.  

The second is the RAD target motion model, which models the movement of the target and 

its surroundings. This is used to compute target trajectories relative the last strong update. 

The third is the RAD camera motion model, which estimates the motion of the camera 

relative to the target. A homography is computed for each frame and used to reconstruct the 

targets traveled path in a homogeneous coordinate space. RAD stores 3 RAD Appearance 

Models, the ‘fixed model’ from initialization, the ‘stable model’ from the last update above the 

strongly tracked upper threshold and the ‘active model’ from each strongly tracked update 

or recoverably weak update.  


